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Learning control algorithm for nonlinear maps

Jair Botina and Herschel Rabitz
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

~Received 2 June 1997!

A feedback optimal control algorithm is developed forN-dimensional maps, which uses learning-based
feedback optimal control techniques. The algorithm has two steps:~1! Learn the control of a reference map
containing a stochastic term.~2! Apply the learned control to the laboratory system employing real time
feedback. The stochastic component of the learning step is important to provide a close knit family of controls
to handle laboratory uncertainty and noise. As an example, the formalism is applied to simulated two- and
three-dimensional nonlinear laboratory maps in the presence of noise.@S1063-651X~97!11309-5#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Ott, Grebogi, and Yorke@1# proposed a method for con
trolling systems described by dynamical maps. Their met
consists of first choosing an unstable periodic orbit emb
ded in the chaotic dynamics, and then defining a small reg
around the desired periodic orbit. One needs to evolve
dynamical map for each initial condition~usually chosen a
random! in the desired small region. Then a suitable sm
perturbation of the control parameter is applied in order
force the trajectory to stay around the desired unstable p
odic orbit. This technique has been applied to a wide var
of experimental systems@2#. Other methods have been pr
posed including a continuous feedback approach@3#, a sta-
tistical analysis technique@4#, a local response algorithm@5#,
geometric resonance@6#, etc. These methods suggest th
there is flexibility in the control of nonlinear dynamics.

Here we present an approach for nonlinear control, wh
we use learning-based feedback optimal control techniq
in order to determine the external control interactionen
and/or model parameterspn ~accessible parameters with
the map! at discrete timesn51,2, . . . . Insome casespn and
en may reduce to the same control variables. The algorit
does not require intricate knowledge of the laboratory
namical system. The method starts with a kno
N-dimensional reference dynamical system and a spe
cost functional. The reference system should ideally
closely related to the true one of interest in the laborato
but the demand here is not high. A stochastic driving term
added to the reference model which greatly enhances
scope and robustness of the learned control for transfer to
actual laboratory system. The latter transfer constitutes
second step for laboratory implementation~studied under
simulation here!.

II. LEARNING CONTROL

We assume that the experimentally observable stateX of
a system can be represented by anN-dimensional nonlinear
map. Although we often do not precisely know the true m
F̃, we assume that the following reasonable reference re
sentation

Xn115F~Xn ,pn ,en ,jn! ~1!
561063-651X/97/56~4!/3854~5!/$10.00
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is available. Herejn is a random disturbance~i.e., noise!
which serves the special purpose of broadening the scop
the learned control of the reference mapF in preparation for
transfer to the laboratory where the true mapF̃ may be some-
what different. Although the map is specified at discre
pointsn, below we will refer to these equivalently as a tim
variable.

The first step is to learn control with the reference m
utilizing optimal control theory. Optimal control theory i
based on constructing a minimizing cost functional operat
during the control process. The learning control algorith
assumesa priori the existence of local control over a sma
time interval specified by a window ofnp discretized time
points. We formulate local control by prescribing a co
functional Ji for the i th interval spanned by thenp time
points. The functional is defined such that its minimizati
with respect to the controlen and model parameterpn with
( i 21)np<n< inp meet the physical objective as best
possible. The total cost functional is given by

J5(
i 51

nd

Ji , ~2!

where the evolution dynamics can be done as long is des
by extending the number of control intervalsnd . The break-
ing of J into piecesJi for individual minimization as the goa
of stabilization reflects the local control structure in chao
systems or ones containing a significant level of noise. T
local approach is a key simplifying feature of the proble
The cost functionalJi for each interval is

Ji5 (
j 5ni11

inp

f ~X j !1v1 (
j 5ni11

inp

e j
21v2 (

j 5ni11

inp

pj
2 ,

i 51, . . . , ~3!

where v1 and v2 are positive constant weights
ni5( i 21)np and f (X j ) is a positive definite function tha
acts to guide the dynamics to the controlled objective s
~e.g., achieving a periodic orbit, driving the chaotic dyna
ics to a specific target region, maintaining chaos, etc!. The
weightsv1 andv2 act as penalties to keep the magnitude
the controls as small as possible@7#.
3854 © 1997 The American Physical Society
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56 3855LEARNING CONTROL ALGORITHM FOR NONLINEAR MAPS
We need to minimize the cost functionalJi by an appro-
priate search foren and/orpn , subject to the constraint tha
Eq. ~1! is satisfied. Many means can be applied for this ta
and here we illustrate perhaps the simplest approach. C
sidering thei th interval in Eq.~3!, we prescribenc uniform
values ofen and/or pn for each of thenp time points. A
particular configuration of controls for thei th interval is pro-
vided by the set ofnp values for en and/or pn over
( i 21)np<n< inp . Each of the possiblenc values foren
and/or pn is scaled by an overall parametera. The total
number of configurations in thei th interval is (nc)

np. As an
example, for the limiting case of thei th interval having only
one point~i.e., np51) and withnc53 there are three pos
sible values ofe j and/orpj constituting the configuration:

1
2
3
S a

0
2a

D . ~4!

The index 1, 2, or 3 labels the possible configurations of
control. In this limiting case the control can take on any
the valuesa,0,2a in the i th interval. Fornp51 andnc55
there are five configurations:

1
2
3
4
5

S 2a
a
0

2a
22a

D . ~5!

Again, this case represents only one local controlnp51 with
five possible values. Fornp52 andnc53 there are 3259
possible configurations, each consisting of a pair of con
values:

1
2
3
4
5
6
7
8
9

S a
a
a
0
0
0

2a
2a
2a

a
0

2a
a
0

2a
a
0

2a

D . ~6!

For example, the third configuration in thei th interval has
field valuea at the first time point and field value2a at the
second time point.

Each of the total number (nc)
np of configurations is evalu-

ated for its degree of successful control by substituting
dynamical system containing a configuration for testing,
scribed by Eq.~1!, into the cost functional Eq.~3! at each
instant of discrete time. As an illustration for the case of E
~4! with pn50, we have

Ji 515S f ~X1
a!1v1a2

f ~X1
0!

f ~X1
2a!1v1a2D , ~7!
,
n-

e
f

l

e
-

.

where the superscripta on X indicates thatX is evaluated at
control values scaled witha. For Eq.~6!, we have

Ji 5151
f ~X1

a!1 f ~X2
a!12v1a2

f ~X1
a!1 f ~X2

0!1v1a2

f ~X1
a!1 f ~X2

2a!12v1a2

f ~X1
0!1 f ~X2

a!1v1a2

f ~X1
0!1 f ~X2

0!

f ~X1
0!1 f ~X2

2a!1v1a2

f ~X1
2a!1 f ~X2

a!12v1a2

f ~X1
2a!1 f ~X2

0!1v1a2

f ~X1
2a!1 f ~X2

2a!12v1a2

2 . ~8!

Each of the values ofJ1 @e.g., in Eq.~8!# would be tested to
determine the smallest value to identify the best configu
tion. The corresponding control value would be chosen a
then a move taken toi 52, . . . , etc. In some cases the valu
of a would be changed to attempt a better solution. T
generalization to include a model parameterpn , or other
control parameters implicit in the nonlinear map, is straig
forward.

The minimization procedure permits the determination
the best case among all the configurations for the exte
control or model parameter. For some choices off (X) it can
happen that a startinga value may not yield a minimum for
the cost functional. In this case thea value must be in-
creased untilJi has at least one minimum, determining th
controlled state over thei th interval Xn , Xn11, . . . ,
Xn1np21 with its corresponding discrete control functio

en ,en11 , . . . ,en1np21, and n5( i 21)np11 from Eq. ~3!.

This process is repeated for the next intervali 11 and propa-
gated as long as desired. We will show in some illustratio
that small values fornp and nc are typically sufficient to
achieve the desired control objective. The role of the stoch
tic term jn deserves special comment, as withoutjn the two
steps~1! learning control and~2! laboratory application will
not likely succeed. The termjn serves to broaden out th
region of the state space sampled by the map, and he
provides a more robust repertoire of controlsen ,n51, . . . to
draw upon to stabilize or generally guide the map to achi
its controlled evaluation. For this purpose it is generally on
necessary to treatjn as a single particular random sequen
~trajectory! over n51,2, . . . to provide the desired sam
pling.

III. REAL TIME FEEDBACK

The second step in the process is to apply the lear
controlen andpn to the laboratory system. However, this ca
not be simply done by a direct application of the seque
e1 ,e2 , . . . ,en ,en11 , . . . due to laboratory noise and lack o
precise knowledge about the laboratory map. We operat
the following manner. Each learned state s
Xn ,Xn11 , . . . ,Xn1np21 in the i th interval with

n5( i 21)np11 has a particular sequence of contro
en , . . . ,en1np21 associated with it. In the laboratory at th
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3856 56JAIR BOTINA AND HERSCHEL RABITZ
current time step we may observe the state asX̃, and the task
is to identify the appropriate controls to apply from th
learned set. Thus we seek to find the learned stateXn that is
close toX̃,

bnc5minuX̃2Xnu, ~9!

wherebnc indicates the indexn at which the minimum con-
dition is satisfied. The indexbnc is used to specify the value
of the controlled sequence ase bnc ,e bnc11 , . . . ,e bnc1np21 to be
applied. The process is then repeated with a new observa
of X̃. It is important to understand that the net application
Eq. ~9! can draw on the entire set of learned dynamics~i.e.,
the control over the interval may not actually start w
e bnc1np

due to laboratory noise and uncertainty!.
To summarize, the algorithm for controlling a

N-dimensional map consists of two general steps I and I
~I! Learn control of a stochastically driven reference m

F.
~a! Choose a random initial starting pointX0 and the val-

ues ofnp andnc .
~b! Minimize the cost functional in Eq.~3! over the con-

trol configurations using the observed results of the map
~c! If a minimum solution forJi is not found among all

the configurations, then increasea→ a1 d, where d is
small, and repeat step~b!.

~d! Return to step~b! for the next intervali until a desired
number of steps is completed.

~II ! Apply the learned control in part I to the laborato
map.

~a! Observe the current laboratory stateX̃ and seek the
learned stateX bnc closest to it.

~b! Apply the control sequence
e bnc ,e bnc11 , . . . ,e bnc1np21, and observe the final outcom

X̃8.
~c! Return set~a! with X̃→X̃8, and repeat as many time

as desired.
The simplicity of this algorithm for a laboratory dynam

cal map is evident from the fact it does not require identi
ing the unstable periodic orbits, performing a local stabil
analysis, determining a basin of attraction, etc. The algorit
detects periodic unstable points to control chaotic moti
and addresses the irregular dynamics around a region w
it is most likely to control the chaotic dynamics with a min
mum magnitude control perturbation. If a stable orbit exi
in the unperturbed system~i.e., en50) consistent with
minf(X…, then the cost function will be biased toward such
solution @7# as a result of the penalty terms weighted byv1
in Eq. ~3!.

IV. NUMERICAL EXAMPLES

In the following examples, we consider only contr
through an external interaction which demonstrates that s
an interaction can stabilize the chaotic dynamics.

A. Learn control of the reference map

As a first example, consider the two-dimensional He´non
map @8#
on
f

p

-

m
,
re

s

ch

xn115p2xn
210.3yn1en1jn ,

yn115xn , ~10!

where the critical parameterp5pc has the value;1.42; for
p.pc , the map dynamics is chaotic. Here we chose
value p52.0 beyond criticality, andjn is Gaussian white
noise with zero mean and standard deviationj5131023

@9#. This system, without noise, was chosen earlier to stu
anticontrol @8# with potential applications in biological dis
order ~the proper operation of some systems seems to
mand chaotic and/or complex dynamics! @10#.

The function f (xn ,yn ,p) in the cost functionalJi that
minimizes the deviation of the chaotic trajectory for ea
interval i was

f ~xn ,yn ,p!5H 0 if xn ,yn,R
13105 if xn ,yn,” R,

~11!

whereR is a specific target region for motion of the dynam
cal system. The regionR may be made more restrictive in a
iterative fashion as the control evolves. The weight para
eters were chosen asv15v251. The number of discrete
time intervals wasnp53 andnc53, so we have 27 searc
configurations. The low number of configurations was fou
to be sufficient to stabilize the chaotic dynamics using
small control perturbationen ~for the Hénon map, control
through pn and en are equivalent!. The periodic unstable
points are unknown in this approach, but it is not necess
to know them in order to control the chaotic dynamics. T
regionR, was originally specified as22.2<R<2.2 for both
xn andyn , which produces similar anti-control dynamics

FIG. 1. Stabilization of chaotic dynamics in a two-dimension
Hénon map with noise.~a! Control of the statexn vs map indexn.
~b! Optimal external interactionen needed to preserve the period
motion in ~a!.
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56 3857LEARNING CONTROL ALGORITHM FOR NONLINEAR MAPS
in Fig. 12 of the work by Yanget al. @8#. The regionR was
then redefined to be a tight envelope around the phase p
curve. This new regionR is used in order to predict the ne
external interaction and to stabilize the system around p
odic unstable points. This gives a set of controlled poi
around the unstable periodic point.

Figure 1 shows a portion of the learned control dynam
in which the total number of intervals 1< i<nd was
nd5300. We show the regular dynamics of the statexn ,
along with the optimal external interactionen needed to pre-
serve regular dynamics, with a single Gaussian white no
trajectory of standard deviation 131023. It is evident that
the control field in the presence of the noise trajectory p
duces periodic motion of the system. The slightly nonpe
odic nature of the control in Fig. 1 is significant, and it r
sults from the noise in the system. The total number
periodic unstable points are nine, in which the control fie
forces the chaotic dynamics to move.

As a second example, consider a three-dimensional
@11#

xn115axnyn2bzn1~b21!zn
31en1jn ,

yn115xn ,

zn115yn , ~12!

where a50.2 andb52.38. Whenen50 and jn50, these
parameters produce hyper2-chaos~three positive Lyapunov
characteristic exponents! dynamics@11#. The external inter-
actionen is used as a control with the objective of stabilizin

FIG. 2. Stabilization of chaotic dynamics in a three-dimensio
map with noise~the same Gaussian white noise as in the tw
dimensional map of Fig. 1!. ~a! Control of the statexn vs map index
n. ~b! Optimal external interactionen needed to preserve the per
odic motion in~a!.
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the chaotic dynamics and localizing the unstable perio
points. The total number of configurations was 27, w
np53 andnc53, as for the two-dimensional map. It is in
teresting that for successful control the number of pointsnp
andnc does not directly depend on the dimensionality of t
map. The value of21.2<R<1.2 was chosen to predict th
periodic motion of the three-dimensional map.

Figure 2 shows the results for a portion of the dynam
of the proposed algorithm for the three-dimensional case
which the total number of intervals wasnd5300. We show
the regular dynamics of the statexn with the optimal external
interactionen needed to preserve regular dynamics. Simi
periodic dynamics are found for the state componentsyn and
zn . The number of periodic unstable points associated w
the chaotic dynamics is 24.

B. Application of the learned control to a laboratory map

Figures 1 and 2 show the learned controlled dynam
through an external control interaction in the presence
imposed noise trajectory. Here through simulation we w
show that the learned control field can be applied to achi
laboratory control. Figures 3 and 4 show the robustness
the present approach with respect to small errors on the

l
- FIG. 3. Average deviation̂D& of the laboratory and learned
trajectories with respect to Gaussian white noise in the opti
control field sequence and the initial conditions. The noise is ch
acterized by its standard deviationf. ^D& is defined as

^D&5(1/MNT)(m,n51
MNT uX̃n

m2Xnu which measures the deviatio
from the reference controlled trajectoryXn given in Fig. 2, and the

new observed control trajectoryX̃n
m generated by Eq.~9! for the

mth member of an ensemble withM terms~in both casesM5100).
NT52000 is the number of controlled discrete time steps.~a! f is
noise in the optimal control sequence.~b! f is noise in the initial
condition (X05X01f).
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3858 56JAIR BOTINA AND HERSCHEL RABITZ
timal control field sequence@Fig. 3~a!#, initial conditions
@Fig. 3~b!#, and uncertainty in the parameters~Fig. 4! of the
three-dimensional map. Similar results were found for
two dimensional map. We started with the same control
jectory in Fig. 2, and introduced small deviations in eith
the initial conditions, control field sequence, or uncertai
in the map parameters. The noise ensemble had 100 m
bers, and 2000 discrete time steps were followed. In the
ures~see the caption to Fig. 3! ^D& measures the deviation o
the simulated laboratory control trajectory from the traje
tory in Fig. 2. The proposed algorithm can support sm
errors in the optimal control field sequence of the order
131023, in the initial conditions of the order of 131022,
and uncertainty in theb parameter of approximatel
531022 for this example. The controlled motion appea
periodic as in Fig. 2 for this interval of errors, but the moti

FIG. 4. Robustness of the present learning control with resp
to uncertainty in the control parameterb for the three-dimensiona
map b5bref1d. The reference learning control dynamics has
valuebref52.38 as in Fig. 2.
o

ev
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e
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r
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f

becomes irregular and diverges for larger values of dis
bance. These simulation results show the degree of rob
ness of the present algorithm for potential application in
laboratory. We emphasize that the presence of noisejn in the
learning process is critical for obtaining robustness, as w
out jn there is essentially no tolerance to laboratory err
and uncertainty.

V. CONCLUSIONS

This paper demonstrates that a two-step learning-ba
optimal control theory technique applied to dynamical ma
allows one to determine the control necessary to stabi
chaotic dynamics or maintain chaos. The algorithm opera
by drawing on a repertoire of learned controls that opera
in a window around the unstable periodic points to keep
dynamics around this region. An important component of
learning process with the reference map is the introduction
noise to assure a measure of robustness to laboratory u
tainty. If the state is outside of this region, then the cont
algorithm attempts to retain order, but divergence will app
at high values of noise or uncertainty in the state or m
parameters. This approach was shown to be reasonably
bust to different noise ensembles consisting of changes in
initial conditions, errors in the optimal control sequence a
uncertainty in the map parameters. Also the number of c
trol configurations~i.e., computer experiments! is not di-
rectly related to the dimensionality of the system, sugges
that this method can be applied to complex systems.

ACKNOWLEDGMENTS

J. B. would like to express his gratitude to Professor
grid Daubechies and Professor Yannis Kevrekidis for ma
interesting discussions. We acknowledge support from
Office of Naval Research and the U.S. Army Research
fice.

ct
-
ally

d R.
@1# E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett.64, 1196
~1990!; L. Poon and C. Grebogi,ibid. 75, 4023 ~1995!, and
references therein.

@2# S. J. Schiff, K. Jerger, D. H. Duong, T. Chang, M. L. Span
and W. L. Ditto, Nature~London! 370, 615 ~1994!, and refer-
ences therein.

@3# K. Pyragas, Phys. Lett. A180, 99 ~1992!; K. Pyragas and A.
Tamasevicius, Phys. Lett. A180, 99 ~1993!; W. Just, T. Ber-
nard, M. Ostheimer, E. Reibold, and H. Benner, Phys. R
Lett. 78, 203 ~1997!.

@4# D. T. Kaplan, Physica A73, 38 ~1994!.
@5# V. Petrov, E. Mihaliuk, S. K. Scott, and K. Showalter, Phy

Rev. E51, 3988~1995!.
@6# R. Chacon, Phys. Rev. Lett.77, 482 ~1997!.
,

.

@7# J. Botina and H. Rabitz, Phys. Rev. Lett.75, 2948~1995!; W.
S. Warren, H. Rabitz, and M. Dahleh, Science259, 1588
~1994!.

@8# W. Yang, M. Ding, A. J. Mandell, and E. Ott, Phys. Rev. E51,
102 ~1995!.

@9# Note that, in the learning process, one may think ofjn as
‘‘deterministic’’ noise in that a single noise trajectory is em
ployed; this causes no problem, as the system typic
samples the same region of the state space many times.

@10# D. Ruelle, Phys. Today46~7!, 24 ~1994!, and references
therein; T. Chang, S. J.Schiff, T. Sauer, J.-P. Gossard, an
E. Burke, Biophys. J.67, 671 ~1994!; V. In, S. E. Mahan, W.
L. Ditto, and M. L. Spano, Phys. Rev. Lett.74, 4420~1995!.

@11# M. Klein and G. Baier, Chaos Solitons Fractals4, 1889~1994!.


